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In this study, the theory of cartesian electric and magnetic multipole moments is
extended in a unified way. The general analytical expressions for distinct components of
arbitrary rank cartesian electric and magnetic multipole moment operators are derived
as linear combination of corresponding spherical operators, which can be used as inter-
conversion between cartesian and spherical electric and magnetic multipole moment
tensors. The transformation properties, such as translation and rotation of cartesian
electric and magnetic multipole moments are given in a very simple general form. The
relationship between distinct and linearly independent components of cartesian mul-
tipole moment tensors in system of linear symmetry is also presented. The formulae
obtained in this paper can be utilized to calculate the interaction energies between
charge distributions.

KEY WORDS: cartesian multipole moment tensor, translation of multipole moment
tensors, rotation of multipole moment tensors

1. Introduction

The determination of electric and magnetic multipole moments (multipole
moments) has been pursued with considerable enthusiasm in the past decade in
large part because of the central role which they play in intermolecular interac-
tions [1], and also as an outcome of studies on nonlinear optical properties [2–
4], collisional effects in IR and NMR spectroscopy [4, 5], intensity differantials
in Rayleigh and Raman scattering [6], hyperfine interactions [7], and theoretical
prediction of the geometries of van der Waals molecules [8–10].

Since the experimental values for the higher moments are comparatively
rare, there have regrettably been few recent studies of this type; the vast major-
ity of recent published works consist of theoretical studies, usually by ab initio
methods at both self-consistent field (SCF) and correlated levels.
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Electric and magnetic multipole moment operators may be defined in two
different ways, either on the basis of spherical harmonics [11,12] or in terms of
cartesian coordinates [1,13–16], and also the relationship between the two sets of
multipoles have been derived [17,18].

The electrostatic potential outside a sphere surrounding a given charge dis-
tribution may be expressed in terms of spherical multipole moments. A spheri-
cal multipole moment of order l has only (2l + 1) independent components. A
cartesian multipole tensor of order l has 3l components of which, in general
(l + 1)(l + 2)

/
2 are distinct. This suggests that in the calculation of the outer

potential and of the interaction between charge distributions, the formulation in
terms of spherical moments is to be preferred. On the other hand, in both ana-
lytical and numerical calculations the cartesian moments are often more conve-
nient. In the following, we will show that all the distinct components can be
obtained in terms of (2l +1) linear independent components. Analytical formula
for linear independent components is obtained through the spherical moments
and therefore, the expression obtained for cartesian multipole tensor components
can be regarded as the interconversion between cartesian and spherical multipole
moment tensors.

In spite of the fact that formulae for spherical electric and magnetic multi-
pole moment operators have been derived in literature, to the best of our knowl-
edge, hitherto no general analytical formulae have been reported for arbitrary
rank cartesian electric and magnetic multipole moment operators.

This work differs from previous works in many cases as discussed in
section 4. In addition, it should be mentioned that despite this work seems
similar to recent work of Hoffmann [18], this work have many advantages over
previous literature. That is, since complex spherical harmonics used in paper by
Hoffmann with tedious algebra, we have derived all expressions for both com-
plex and real spherical harmonics with very simple algebra. Moreover, the uni-
fied expressions presented here are valid for both electric and magnetic multipole
moment operators.

The first two sections of this paper are devoted to the general cartesian
expressions for the spherical electric and magnetic multipole moment operators.
In section 3, we give the general analytical expression for distinct components
of arbitrary rank cartesian multipole moment operators in terms of spheri-
cal multipole moment operators that can also be regarded as interconversion
between cartesian and spherical electric and magnetic multipole moment tensors.
Then translational and rotational properties of cartesian multipole moments are
given in a relatively simple general form. Consequently, the symmetry relations
for linear molecules given by McLean and Yoshimine [14] generalized to any
order.
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2. General Cartesian expressions for spherical electric and magnetic multipole
moment operators

2.1. Spherical electric multipole moment operators

Spherical electric multipole moment operator is given by the relation [11]:

M (e)
lm (�r) =

√
4π

2l + 1
rl Slm (θ, ϕ) , (1)

where Slm(θ, ϕ) are complex or real spherical harmonics [19]. Recently, we have
expressed cartesian expressions for spherical electric multipole moment operator
through the binomial coefficients by the relations [20];

M (e)
lm (�r)≡ M (e)

lm (x, y, z)=(−1)1/2(|m|−m)
∑

k

(−1)kck
lm(x+iy)k+m(x−y)k(z)

l−(2k+m)

(2)

for complex spherical electric multipole moment operators, and

M (e)
lm (�r) ≡ M (e)

lm (x, y, z) = fm (x, y)
∑

k

Ck
lmz

l−(2k+m)
(z2 − r2)

k+m
2 (1−εm) (3)

for real spherical electric multipole moment operators. In equations (2) and (3),
k varies as 1

2 (|m| − m) � k � 1
2

[
(l − m) − 1

2 (1 − (−1)l−m)
]

and expansion coeffi-
cient ck

lm is given by

ck
lm = 1

22k+m
[Fl−k(l + m)Fk+m(l − k)F2k(l − m)Fk(2k)]1/2 . (4)

In equations (2) and (3)

fm (x, y) =
√

2
(1 + δm0)

λ∑

s=1/2(1−εm)

(2) (−1)
1
2

[
s− 1

2 (1−εm)
]

Fs (λ) xλ−s ys, (5)

in which, λ = |m| , Fm(n) = n!/m!(n − m)! is the binomial coefficient, the sym-
bol

∑ (2) indicates that the summation is to be performed in steps of two. The
symbol εm is defined as follows:

εm =
{

1 for m � 0,

−1 for m < 0.
(6)

In [20], spherical electric multipole moment components, up to rank 6, are
tabulated.
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2.2. Spherical magnetic multipole moment operators

There are number of definition for spherical magnetic multipole moment
operator in literature and the most commonly used one [13,21] is

M (m)
lm (�r) = 2

l + 1

(
∇M (e)

lm (�r)
)

µ̂. (7)

Analytical expression for spherical magnetic multipole moment operator is given
by employing closed formulas for derivatives of spherical electric multipole
moment operators by the relation as [22]:

M̂ (m)
lm (�r) = 2

l + 1

1∑

i=−1

⎧
⎨

⎩

(l−1)∑

m′=−(l−1)

ai
lm,m′ M̂

(e)
l−1, m′ (�r)

⎫
⎬

⎭
µ̂i (�r), (8)

where M̂ (e)
lm is spherical electric multipole moment operator, µ̂i is magnetic dipole

moment operator, and

a1
lm,m′ = εm

2
(1 − 2δm0) [(l + m) (l + m − 1)]

1/2 δm′,m−1

−εm

2
[(l − m) (l − m − 1)]

1/2 δm′,m+1, (9)

a−1
lm,m′ = iεm

2
(1 − 2δm0) [(l + m) (l + m − 1)]

1/2 δm′,m−1

+ iεm

2
[(l − m) (l − m − 1)]

1/2 δmm′, (10)

a0
lm,m′ = [(l + m) (l − m)]

1/2 δmm′, ai
0m,m′ = 0, ai

1m,0 = δim (11)

for complex spherical magnetic multipole moment operator, and

a1
lm,m′ = εm

2
[(1 − δm0) (1 + δm1) (l + m) (l + m − 1)]

1/2 δm′,m−1

−εm

2

[
(1 + δm0)

(
1 − δm,−1

)
(l − m) (l − m − 1)

]1/2 δm′,m+1,

(12)

a−1
lm,m′ = −εm

2
[(1 − δm0) (1 − δm1) (l + m) (l + m − 1)]

1/2 δm′,−m+1

−εm

2

[
(1 + δm0)

(
1 + δm,−1

)
(l − m) (l − m − 1)

]1/2 δm′,−m−1

(13)

for real spherical magnetic multipole moment operator. In equations (8)–(12), δi j
is Kronecker delta function.
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Substituting equation (3) in equation (8), one obtains cartesian expression
for spherical magnetic multipole moment operator.

3. General analytical expression for cartesian electric and magnetic multipole
moment operators

Following Buckingham [1], the lth order cartesian multipole moment oper-
ator is given by

Ql = (−1)l

l !
∣
∣�r ∣

∣2l+1∇l
(∣
∣�r ∣

∣−1
)

. (14)

The cartesian multipole moment operators of order l are symmetrical
because of the commutativity of the differentiation operators, and traceless in
each pair of indices. Thus, only (l + 1) (l + 2)

/
2 of its 3l components are dis-

tinct; the l (l − 1)
/

2 constraints implicit in the tracelessness property of the ten-
sor reduce this number of distinct components to (2l + 1).

In this study, we investigate the distinct components of cartesian multipole
moment operators in two parts: (2l + 1) linearly independent components and
l (l − 1)

/
2 distinct components obtained via traceless properties of cartesian mul-

tipole moment tensors. We will show all the distinct components for l order
cartesian tensor by the general notation Ql

i jk , in which i, j , and k indicate,
respectively, the number of x, y, and z, with i + j + k = l.

For linear independent components, we will use the notation Ql
µ by expres-

sion

Ql
µ (x, y, z) =

max(m1,m2)∑

m=min(m1,m2)

(2) al
µm Mlm (�r), (15)

where m1 = µ and m2 = εµ

2 [1 − (−1)µ]−2δεµ,−1. The ranges of indices are 0 � j
� 1, 0 � i, k � l with i + j + k = l and µ = (−1) j (i + j).

The inverse relation for equation (15) is

Mlm(�r) =
max(µ1,µ2)∑

µ=min(µ1,µ2)

(2)b l
mµ Q l

µ (x, y, z)
εm

2

[
1 − (−1)m]

, (16)

where µ1 = m and µ2 = εm
2

[
1 − (−1)m] − 2δεm ,−1.

In equations (15) and (16), Ql
µ is cartesian multipole moment operators

and M lm is spherical multipole moment operators.
The coefficients al

µm and bl
mµ are given by

al
µm =

⎧
⎨

⎩
(−1)

(µ−m)
2

Fµ(l)

(
2

1+δm0

)1
2 C

(µ−m)
2

lm for µ � 0, m � 0,

m
µ

al|µ||m| for µ < 0, m < 0
(17)
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and

bl
mµ =

⎧
⎪⎨

⎪⎩

[(
m

m−µ

) (√
2
)µ−m+(2−m)δµ0

](1−δµm)
1

al
mm

for m � 0, µ � 0,

µ
m bl|m||µ| for m < 0, µ < 0.

(18)

If we require that the transformations (15) and (16) be unitary, then

al = b̃l (19)

must be satisfied. Here b̃ l means the transpose of b l .
We express other l (l − 1)

/
2 distinct tensor components in terms of linearly

independent components as

Ql
i jk = − (1 − δi0δk0)

(
Ql

ξ + Ql
ξ−2εξ

)
− 1

2

[
1 + (−1) l

]
δi0δk0

l∑

µ=0

(2) Fµ
2

( l
2

)
Ql

µ,

(20)

where i, j , and k is the number of x, y, and z, respectively, in multipole moment
tensor indices with i + j + k = l. For distinct components, the ranges of indices
i, j, k are 2 � j � l, 0 � i, k � l and ξ in the first summation term is ξ = (−1) j

(i + j). Some results of equations (15) and (16) are given in Appendix A.

4. Transformation properties of Cartesian multipole moment tensors

The simplest or principal axis components of molecular tensor properties
refer to body-fixed axes. On the other hand, what are directly measured in exper-
iments are usually space-fixed axis components. Thus, one must know how to
transform these tensors from body-fixed to space-fixed axes, and conversely.

The transformation properties of the spherical multipole moments are sim-
pler than cartesian cases, and to the best of our knowledge, there is no study on
transformation properties of cartesian electric and magnetic multipole moment
tensors. In this part, we will discuss separately translational and rotational prop-
erties of cartesian multipole moment tensors.

4.1. Translational transformations

In calculating expectation values of electric or magnetic multipole moments,
center of mass is taken as coordinate axes that multipole moments are calcu-
lated. It is well known that except for the first nonzero multipole moment, the
higher order multipole moments are origin dependent and must be translated to
the center of mass.
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Translation formulas for spherical multipole moments have been discussed
by several investigators with increasing generality [11,17,23], but for cartesian
electric multipole moments only by McLean and Yoshimine [14] with tedious
algebra and very special formulas.

To consider the properties of cartesian multipole moments under transla-
tion of coordinate origin, let first examine the translation of spherical multipole
moments:

In this study, we use the translation formula for spherical multipole
moments

〈Mlm (�ra)〉 =
l∑

l ′=0

l ′∑

m′=−l ′
�∗

lm,l ′m′
( �R

)
〈Ml ′m′ (�rb)〉 , (21)

where �∗
lm,l ′m′

( �R )
is the translation coefficients for spherical multipole moment

operators [23]. There should be a little modification in equations (5) and (6) of
Ref. [23] with

�∗
lm,l ′m′

( �R
)

= M̂l−l ′, m−m′
( �R

)
	lm,l ′m′ (22)

and

	νσ,ν′σ ′ = [Fl ′+m′ (l + m) Fl ′−m′ (l − m)]1/ 2 . (23)

As can be seen from equation (20), the translated multipole moments
include all the lower order moments where 〈Mlm (�ra)〉 and 〈Mlm (�rb)〉 denotes
spherical multipole moments in old and new coordinate systems, respectively.

Since we have expressed cartesian multipole moment operators through the
spherical multipole moment operators with equations (16) and (20), there is no
need to translate cartesian multipole moment tensor components as done in the
study of McLean and Yoshimine [14] with cumbersome algebra.

4.2. Rotational transformations

The rotation of spherical multipole moment operators are given by the rela-
tions [11]:

M lm (new) =
∑

m′
G∗ l

m′m (α, β, γ ) M lm′ (old). (24.a)

The inverse of equation (24.a) is

M lm (old) =
∑

m′
G l

m′m (α, β, γ ) M lm′ (new). (24.b)
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Since we have expressed the cartesian multipole moment operators in terms
of spherical operators, the rotation of cartesian multipole moment operators are
given by

Ql
µ′

(
r ′) =

l∑

µ=−l

Gl
µ′µ (α, β, γ ) Ql

µ (r) (25.a)

with the inverse relation

Ql
µ (r) =

l∑

µ′=−l

[
G ′

µµ′ l (α, β, γ )
] −1 Qµ′ l

(
r ′). (25.b)

In equations (24) and (25), G l
m′m (α, β, γ ) are rotation matrices, for complex

[24] or real spherical harmonics [25]. It can be seen from equations (25) that the
rotation of cartesian multipole moment operators are as of spherical multipole
moment operators.

5. Distinct components of Cartesian multipole moment tensors of linear
molecules

The molecular symmetry places a restriction on the number of distinct com-
ponents for the cartesian multipole moment tensors. Therefore, it is necessary to
determine (following the symmetry of the molecules) the distinct components in
the molecular Oxyz system.

In this section, we give basic analytical expressions for distinct tensor com-
ponents of linear (D∞h, C∞v) molecules.

For linear molecules, Oz-axis is chosen as the molecular axis joining the
center of molecules. We define the distinct components, Ql

i jk of cartesian mul-
tipole moment tensors for linear molecules by the relation

〈
Ql

i jk

〉
= ηl

i j 〈Ml0〉 , (26)

where Ql
00l = Ql

0 = Ml0 and the coefficient ηl
i j is defined by

ηl
i j = 1

Fi/2

(
i+ j

2

)al
io al

jo. (27)

By analyzing the coefficient ηl
i j , the following symmetry properties are obtained:

ηl
i j = ηl

ji , (28)

〈
Ql

i jk

〉
=

〈
Ql

jik

〉
. (29)
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As can be seen from the equations (26)–(29), the following results are obtained:

(i) any tensor component with x or y odd suffixes is identically null;

(ii) any tensor component remains unchanged under permutation of the x
and y suffices;

(iii) only one independent scalar quantity is required to determine the mag-
nitude of any component, which can be thus calculated from the Ql

00l
component value [14,25].

Equation (26) verifies and generalizes the results derived by McLean and
Yoshimine [14] and Isnard et. al. [26] to any order with the best agreement of
the results of Cipriani and Silvi [27]. Some results of equation (26) are listed in
Appendix B.

6. Results and discussions

In this study, first, we have given an analytical formula for distinct compo-
nents of cartesian electric and magnetic multipole moment tensors. By the use of
this formula, the higher order cartesian electric and magnetic multipole moment
tensors can be easily constructed.

Second, the translation and rotational transformations of cartesian electric
and magnetic multipole moment tensors are investigated first in literature. Con-
sequently, the relationships between the distinct and linearly independent tensor
components for linear molecules are given. Thus, without calculating all tensor
components, the cartesian electric and magnetic multipole moment tensors can
be easily calculated.

The expressions obtained here are in general form, applicable to carte-
sian electric and magnetic multipole moment tensors of all orders. The obtained
general analytical expressions for cartesian multipole moment tensor compo-
nents can be used for interconversion between spherical and cartesian multipole
moment tensors, and these formulas are simpler than in the study of Stone [17,
28].

Calculations of cartesian multipole moments using the methods in this
paper give greatly improved agreement with all previous reliable theoretical and
experimental values for a number of molecules.

Our derivation of (15) and (20) show the direct connection between the
cartesian and spherical tensor forms of the multipole moments. Finally, we note
that the obtained general formulas can be useful in other physical applications of
cartesian tensor algebra. The advantages in adopting the notation for cartesian
tensors in this study are as follows:

(i) It is easily seen that the formulae in the literature [16–18,28] are com-
plex in structure and not generalized to arbitrary rank and also not
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applied to big molecules. On the other hand, our unified formula is
general and valid for arbitrary rank. Also our formula is applied to
polyatomic molecules H2O, NH3, and CH4 in our recent paper in
Commun. Theor. Phys. (Beijing–China), 38 (2002) 489.

(ii) The formulae in literature are special such as for linear molecules, tet-
rahedral molecules, etc. On the other hand, our approachz is valid for
molecules having arbitrary symmetry.

(iii) To the best of our knowledge, literature does not contain formula for
cartesian magnetic multipole moment operators. On the other hand,
our unified formula is valid for cartesian magnetic multipole moment
operators also.

(iv) The method presented in this study proves to have not only for-
mal, but also practical computational advantages over the formula-
tions given in the prior literature and allows a more systematic study
of higher order molecular interactions, and can be employed in calcu-
lations of electrostatic multipole interactions, energies, molecular elec-
trostatic potentials, electric fields, etc.

(v) The translational and rotational transformation properties are investi-
gated relatively in a simple way.

(vi) Cartesian multipole moments may be easily related to their irreducible
components as for spherical form and full advantage is taken of the
symmetry of the molecules under consideration.

(vii) The notation used in this study helps to avoid much of tedious algebra
needed in usual cartesian form.

Appendix A: linear independent components of Cartesian multipole moments
tensors: cartesian–spherical and spherical–cartesian tensor transformation up to
rank 4

In this section, cartesian–spherical and spherical–cartesian multipole moment
tensor transformations up to hexadecapole moment are presented by the use of
equations (15) and (16).

1. Cartesian–Spherical transformation for

Dipole moment tensor

Q1
1 = Qx = M11,

Q1
−1 = Qy = M1−1,

Q1
0 = Qz = M10.
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Quadrupole moment tensor

Q2
2 = Qxx = −1

2 M20 +
√

3
2 M22,

Q2
−2 = Qxy =

√
3

2 M2−2,

Q2
1 = Qxz =

√
3

2 M21,

Q2
−1 = Qyz =

√
3

2 M2−1,

Q2
0 = Qzz = M20.

Octopole moment tensor

Q3
3 = Qxxx = −

√
6

4 M31 +
√

10
4 M33,

Q3
−3 = Qxxy =

√
10
4 M3−3 −

√
6

12 M3−1,

Q3
2 = Qxxz = −1

2 M30 +
√

15
6 M32,

Q3
−2 = Qxyz = −

√
15
6 M3−2,

Q3
1 = Qxzz =

√
6

3 M31,

Q3
−1 = Qyzz =

√
6

3 M3−1,

Q3
0 = Qzzz = M30.

Hexadecapole moment tensor

Q4
4 = Qxxxx = 3

8 M40 −
√

5
4 M42 +

√
35
8 M44,

Q4
−4 = Qxxxy =

√
35
8 M4−4 −

√
5

8 M4−2,

Q4
3 = Qxxxz = −3

√
10

16 M41 +
√

70
16 M43,

Q4
−3 = Qxxyz =

√
70

16 M4−3 −
√

10
16 M4−1,

Q4
2 = Qxxzz = −1

2 M40 +
√

5
4 M42,

Q4
−2 = Qxyzz =

√
5

4 M4−2,

Q4
1 = Qxzzz =

√
10
4 M41,

Q4
−1 = Qyzzz =

√
10
4 M4−1,

Q4
0 = Qzzzz = M40.
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2. Spherical–cartesian transformation for Dipole moment tensor

Dipole moment tensor

M11 = Qx ,

M1−1 = Qy,

M10 = Qz.

Quadrupole moment tensor

M22 = 1√
3

Qzz + 2√
3

Qxx ,

M2−2 = 2√
3

Qxy,

M21 = 2√
3

Qxz,

M2−1 = 2√
3

Qyz,

M20 = Qzz.

Octopole moment tensor

M33 = 3√
10

Qxzz + 4√
10

Qzzz,

M3−3 = 4√
10

Qxxy + 1√
10

Qyzz,

M32 = 3√
15

Qzzz + 6√
15

Qxxz,

M3−2 = 6√
15

Qxyz,

M31 = 3√
6

Qxzz,

M3−1 = 3√
6

Qyzz,

M30 = Qzzz.

Hexadecapole moment tensor

M44 = 1√
35

Qzzzz + 8√
35

Q+
xxzz

8√
35

Qxxxx ,

M4−4 = 8√
35

Qyzzz + 4√
35

Qxyzz,

M43 = 12√
70

Qxzzz + 16√
70

Qxxxz,

M4−3 = 12√
70

Qxxyz + 4√
70

Qyzzz,

M42 = 2√
5

Qzzzz + 4√
5

Qxxzz,

M4−2 = 4√
5

Qxyzz,

M41 = 4√
10

Qxzzz,

M4−1 = 4√
10

Qyzzz,

M40 = Qzzzz.
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7. Appendix B: distinct components of cartesian multipole moment tensors for
linear molecules

By the use of equation (25), distinct components of cartesian multipole
moment tensors, up to hexadecapole, for linear molecules are obtained as in the
following:

For quadrupole moment tensor:

Q2
200 = Qxx = η2

20 Q2
002 = −1

2 Qzz,

Q2
020 = Qyy = η2

02 Q2
002 = −1

2 Qzz.

For octopole moment tensor :

Q2
201 = �xxz = η3

20 Q3
003 = −1

2 Qzzz,

Q2
021 = �yyz = η3

02 Q3
003 = −1

2 Qzzz.

For hexadecapole moment tensor:

Q4
400 = �xxxx = η4

40 Q4
004 = 3

8 Qzzzz,

Q4
220 = �xxyy = η4

22 Q4
004 = −1

8 Qzzzz,

Q4
202 = �xxzz = η4

20 Q4
004 = −1

2 Qzzzz,

Q4
040 = �yyyy = η4

04 Q4
004 = 3

8 Qzzzz,

Q4
022 = �yyzz = η4

02 Q4
004 = −1

2 Qzzzz.
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